06.03.2014

Паттерн нейронов-детекторов, настроенных на общий стимул, позволяет запустить собственную уникальную волну идентификатора. Это соответствует узнаванию образа и включению советующего понятия в описание происходящего. Чтобы идентификатор был уникальным, достаточно, чтобы нейроны-детекторы создавали свой узор, непохожий ни на один из волновых узоров, проходящих через их место расположения. Опишем простую модель, создающую такой паттерн.

Вернемся ненадолго к описанию механизмов нейронного взаимодействия. Основной путь передачи сигналов от одного нейрона к другому – это выброс из аксонной терминали передающего нейрона нейромедиаторов в синаптическую щель. На поверхности нейрона, принимающего сигнал, располагаются рецепторы, реагирующие на определенный нейромедиатор, являющийся для него лигандом. Часть рецепторов расположена в синапсах и отвечает за синаптическую передачу, часть за пределами синапсов и ответственна за волновую активность.

Нейромедиаторов существует достаточно много, включая нейроактивные пептиды, их насчитывается более полусотни. Наиболее распространенный активирующий нейротрансмиттер – глутамат, подавляющий – гамма-аминомасляная кислота (ГАМК). Способность активировать или подавлять не является свойством самого нейромедиатора, а определяется типом взаимодействующего с ним рецептора. Чтобы передача сигнала могла состояться, необходимо, чтобы нейромедиатор, выбрасываемый аксоном, и принимающие его рецепторы соответствовали друг другу.

До конца 80-х годов прошлого века считалось, что каждый нейрон выбрасывает один и тот же медиатор во всех терминалях своего аксона – «принцип Дейла». Но позже было показано, что существуют нейроны, использующие различные комбинации медиаторов.

Возьмем для моделирования нейроны двух гипотетических типов, работающие с одним медиатором, назовем его (A). Различие между типами нейронов будет в том, где у них будут располагаться рецепторы, чувствительные к общему медиатору (таблица ниже).

Синапсы Вне синапсов Аксон
Тип 1 A А
Тип 2 A А

Нейромедиаторные характеристики нейронов. Чувствительность рецепторов и выброс аксона

Нейроны первого типа не имеют в своих синапсах рецепторов, чувствительных к используемому медиатору. Но такие рецепторы есть у них на внесинаптической части мембраны. Это значит, что эти нейроны не способны к синаптическому обучению на картины активности, которые создаются нейронами, как первого, так и второго типа, но они способны обучаться на распространение волновой активности и быть передатчиками идентификационной волны.

Возьмем теперь зону коры, состоящую из нейронов обоих типов. Например, просто перемешаем их случайным образом. Наличие вкраплений нейронов второго типа никак не отразится на способности коры обучаться проводить волны идентификаторов, используя нейроны первого типа.

Предположим, что мы каким-то образом определили место на коре, где хотим создать детекторный паттерн.

030614_1358_1

Место, выбранное для обучения

Предположим, что мы решили все вопросы, связанные с обучением, и наша задача сейчас просто зафиксировать прототип. Сделаем это уже знакомым нам способом. Заставим нейроны второго типа, находящиеся в этой области и незанятые в обучении, поучаствовать в генерации случайных спайков. Установим вероятность спайка такой, чтобы получить столько активных нейронов, сколько нейронов-детекторов требуется нам в итоговом паттерне. Случайные спайки создадут уникальный узор из нейронов второго типа, локализованный в выбранной области.

Далее поступим в соответствии с принципом Хебба, используем активность нейронов второго типа как сигнал к их обучению. Изменим веса их синапсов в соответствии с наблюдаемой ими на их рецептивных полях волновой картиной. В результате мы получим паттерн нейронов-детекторов, настроенных на только что прошедший набор идентификаторов. Повторение волновой картины приведет к вызванной активации всех нейронов паттерна. Нейроны первого типа подхватят этот паттерн и превратят его в распространяющуюся волну нового идентификатора.

Мы получили очень простой, но замечательный результат. Определенное сочетание идентификаторов способно порождать свой собственный уникальный идентификатор.

Теперь несколько усложним модель. Добавим еще один медиатор (B) и изменим характеристики нейронов (таблица ниже).

Синапсы Вне синапсов Аксон
Тип 1 B A А
Тип 2 A B B

Характеристики нейронов, использующих два медиатора. Чувствительность рецепторов и выброс аксона

Поведение такой конструкции будет значительно интереснее. Нейроны второго типа, создав детекторный паттерн, не смогут распространить волну от него через нейроны первого типа, так как их тип аксонного медиатора не совпадает с внесинаптической чувствительностью нейронов первого типа. Но зато эти нейроны смогут сами распространить волну своего идентификатора. При этом интересно то, что входная и выходная активность коры окажется разделена. Если мы где-нибудь в стороне создадим выходной волновой туннель из аксонов нейронов второго типа, то он не передаст всю волновую картину, состоящую, в том числе, из множества входных признаков, а оттранслирует далее только описание, состоящие из распознанных понятий.

030614_1358_2

Изменение описания на зоне коры. 1 – выбранный участок обучения, 2 – область, излучающая входной идентификатор, 3 – область выхода, 4 – входной волновой туннель, 5 – выходной волновой туннель, 6 – входная волна идентификатора, 7 – выходная волна идентификатора

Но это еще не все. В той же выбранной области мы можем провести синаптическое обучение нейронов первого типа. Для них сигналом к обучению будет собственная волновая активность. Так как мы задали чувствительность синапсов нейронов первого типа только к медиатору (B), то картины, которые они воспримут – это узор того самого паттерна, что мы ранее обучили на нейронах второго типа. При этом сами нейроны-детекторы первого типа выстроятся в узор, повторяющий волну идентификаторов, которая прошла в момент обучения. Это значит, что если мы через встречный волновой туннель вернем на кору идентификатор понятия, обнаруженного ранее нейронами второго типа, то распространившись до выбранного места, он вызовет активность паттерна нейронов-детекторов первого типа. А так как эти нейроны повторяют узор фрагмента волны исходных идентификаторов, то их вызванная активность заставит распространиться по нейронам первого типа соответствующие идентификационные волны.

Таким образом, мы воспроизвели механизм обратной проекции. Такая кора способна транслировать информацию в обоих направлениях. В прямом направлении происходит интеграция признаков и изменение описания на более общее. В обратном направлении, получив соответствующий идентификатор, кора восстанавливает все соответствующие ему признаки и транслирует их вниз, если, конечно, есть соответствующая проекционная связь.

Мы получили достаточно простую конструкцию: в одну сторону – узнали понятие, в обратную сторону – восстановили признаки. Но эта простота двусторонней коммуникация является уникальным свойством для нейронных сетей. Традиционные сети идеологически однонаправленны, в них нельзя запустить сигнал «обратно по аксону» и этот недостаток не лечится никакими ухищрениями. При этом очевидно, что реальный мозг способен не только обобщать информацию, поднимая описание от уровня к уровню, делая его более абстрактным, но и транслировать описание обратно, превращая его в представляемые нами образы, внутреннюю речь, физические действия. Поэтому особенно радует, что наша конструкция позволяет достаточно естественно воспроизвести обратную проекцию, оставаясь в рамках механизмов, доступных и реальному мозгу.

Если заставить аксоны нейронов одного из типов генерировать сразу два медиатора, то мы получим распространение соответствующих идентификаторов сразу по двум слоям. Можно представить ситуации, где это окажется полезным. Вообще же комбинации медиаторов и рецепторов могут программировать самое неожиданное поведение коры. При этом приятно, что наша кора не требует никакой специальной топологической настройки. Нейроны образуют синаптические контакты со своим окружением, не заботясь о соблюдении каких-либо схем подключения. Очень похоже, что аналогичные архитектурные принципы свойственны и реальной коре.

источник —>>>

Добавить комментарий

Please log in using one of these methods to post your comment:

Логотип WordPress.com

Для комментария используется ваша учётная запись WordPress.com. Выход /  Изменить )

Google+ photo

Для комментария используется ваша учётная запись Google+. Выход /  Изменить )

Фотография Twitter

Для комментария используется ваша учётная запись Twitter. Выход /  Изменить )

Фотография Facebook

Для комментария используется ваша учётная запись Facebook. Выход /  Изменить )

Connecting to %s